

NAWROZ UNIVERSITY

ARCHITECTURE ENGINEERING DEPARTMENT

Syllabus

F

Architecture Engineering

0

Department

5×1 . E

Nawroz University

First	First Year					Secon	<mark>d Yea</mark>	r					Thi	rd Y	lear			Т
	Ho	urs	U				Ho	urs	U						Ho	ours	U	
Subject	Th.	Pr.	^j nits		Su	bject	Th.	Pr.	Inits			Sub	ject		Th.	Pr.	Inits	
Architecture Design & Graphics	2	8	12		Arch Des	itecture sign II	2	8	12		Architecture Design III			2	8	12		
Building Construction I	1	2	4		Persp Sh	Perspective & Shadow		2	4		Theory of Structures			1	1	3		
Principles of Design	2		4		Bu constr	Building construction II		2	4			Wor Draw	king vings		1	3	5	
Descriptive Geometry	1	1	3		Prino Arch	Principles of Architecture			4		Α	Histo rchiteo	ry of cture I	I	2		4	
Free Hand Drawing I	1	3	5		Hist Archi	History of Architecture I			4		Co	ncrete Desi	& Ste gn	el	2		4	
Mathematics & Statics	2		4		Free Drav	Free Hand Drawing II		3	5			Planni Hous	ing & sing		2		4	
Kurdology	1	1	3		Computer CAD I		1	1	3		CAD II			1	1	3		
Computer	2		4		Mechanic & Strength of Materials		2		4									
Engineering Debate		2	0		Surveying		1	1	3									
English	2		4	┥┝									11	12				
Total Hours	14	17 1	43		Total Hours 13 17 43		43]	Fotal 1	Hours		11	13 24	35			
	Fou	<mark>irth Y</mark>	ear	•				Fifth Year										
				Η	ours	L						Ho	urs	H	lours	<mark>, </mark>	-	
Sul	bject			Th.	Pr.	Di Subject					Th.	Pr.	Th	n. P	r.			
Architectu	re Desi	ign IV		2	8	12	Urban Design In		nfill	1	2	6		-	-	5		
Urbar	n Desig	n		2	4 Design The		Thesis	5		2	6	3	1	4 1	.5			
Interior & De	z Land sign	scape		1	3 5 F		Estimation & Professional Practice		e	2			-	-	2			
Theory of	Archit	ecture		2	4		S	pecific: Estim	ation ation	&				2	-	-	2	
Engineeri	ng Ser	vices		2	4 4 4		Local Architecture		•	2		2		-	4			
Architectura & Ac	l Envir oustics	ronme S	nt	2			Architecture Criticism		m			2		-	2			
Advance Tech	d Buile nology	ding		2			H	Philoso Archite	phy o ecture	f		2		2		-	4	
Total	Hour	S	-	13	<u>11</u> 24	37]	Fotal 1	Hours	5		10	12	11 7	1	4 3	4	

Th. = Theoretical

Pr. = Practical

Total No. of Hours: 156. Total No. of Units: 192.

First Year

	First Year									
No	Code No	Subject		Hours						
110.	couc no.	500ject	Th.	Pr.	lit					
1	A.E. 101	Architectural Design & Graphics	2	8	12					
2	A.E. 102	Buildings Construction I	1	2	4					
3	A.E. 103	Principles of Design	2	0	4					
4	G.E. 104	Descriptive Geometry	1	2	4					
5	A.E. 105	Free Hand Drawing I	1	3	5					
6	G.E. 106	Mathematics and Statics	2	0	4					
7	G.E. 107	Computer	1	1	3					
8	8 G.E. 108 Kurdology									
9	G.E. 109	Engineering Debate	0	2	0					
10	G.E. 110	English	2	0	4					
			14	18	44					
		Total Hours	3	2						

A.E. = Architecture Engineering

G.E. = General Engineering

Marks Distribution

Subject	First	Mid-	Year	Second	Fi	nal	Total
	Semester	Th.	Pr.	Semester	Th.	Pr.	mark
Architectural Design &	35	0	10	35	0	20	100
Graphics							
Buildings Construction 1	20	10	10	20	20	20	100
Principles of Design	5	30	0	5	60	0	100
Descriptive Geometry	20	10	10	20	20	20	100
Free Hand Drawing l	35	0	10	35	0	20	100
Mathematics and Statics	5	30	0	5	60	0	100
Computer	20	10	10	20	40	0	100
Kurdology	5	30	0	5	60	0	100
Engineering Debate	35	10	0	35	20	0	100
English	5	30	0	5	60	0	100

Subject	Architectural Design and Graphics	No. of Hours	10	No. of Units	12
	Grupines				

- Developing the creativity thinking at what related to drawing and design.
- Identifying the basic fundamentals of the two and three dimensional design: the concept, elements, fundamentals, principles of composition, and kinds of compositions, using the production technology to facilitate the idea.
- The aim for the first year is to make students have the ability to design, present and magnate architecture concepts.

Introducing Architecture and Engineering Tools, drawing free hand lines vertical & horizontal, drawing lines by tools vertical & horizontal, drawing lines by tools vertical & horizontal & diagonal, Filling geometrical shapes with continuous & different dashed lines, Composition of 4 shapes Drawing A3 with repetition of one, Composition of Intersection between textures, Composition of straight and curved lines, Spatial arrangement using copies of one shape, Collage composition breaking the dominance of a Shape, Scientific picnic observing the nature, Abstracting an image of animal or plants from nature, Introduction to the first 3d Modeling from two color composition, 3D model for White and black or two color composition (start from Cube), Plan Drawing, First Elevation Drawing, Second Elevation Drawing , Final Drawing top view & elevations for the 3D model, Introduction to the 3D model isometric, Final the 3D model isometric, Introduction to the second semester, Weekend house project., Site visiting to design a Weekend house project, The studies of site and the functional program of the project, Preliminary (mass model) First concept, (DAY SKETCH) designing a symbolic gate or (LOGO DESIGN), Preliminary presentation, Plan Learning and drawing, Drawing elevations, Final elevations, learning section drawing, Drawing First section, Drawing Second section Pre-final presentation all requirements, Drawing 3D isometric, Final modeling

- Architecture: Form, Space, and Order by Francis D. K. Ching.
- Architectural Graphics by Francis D. K. Ching.
- Drawing and designing step by step
- Architectural Standard Ernst & Peter Neufert.

|--|

- Develop the abilities of analysis and criticism through establishing the necessary principles, reinforcing and studying the concepts of space, mass, and shape from different sides, acquainting with the most important critical discussions.
- Increase the knowledge of student about the design & how to design (composition, picture, sculpture, etc...).
- Understanding form, function, Design concepts and Design processes.

Introduction: What is art and architecture?, Design elements, Design principles, Color in design and architecture., Architectural Design principles with examples, Architectural Debate (students reports), Proportion of design (1). Golden Ratio, Proportion of design (2) Le Modulor, Architectural design thinking, Unity of design, Architectural composition compliments, Constructional design, Architectural form and space, Architectural Design Debate, Architectural Design Debate (students reports of architects and buildings)

- Architecture Principia: Architectural Principles of Material Form by Gail Peter Borden and Brian Delford Andrews (Jan 21, 2013).
- The Elements of Architecture: Principles of Environmental Performance Buildings by Scott Drake (Apr 30, 2009).
- 10 Principles of Architecture by Ruth Slavid.

Subject

Building construction

No. of Hours

No. of Units

2

4

Course Objectives:

- Identifying the First year students in the department of Architectural Engineering with the different building materials on the local building materials and the related building works (Bonding and setting up these materials together).
- The academic term includes site visits and tests.

General Introduction to the Building Construction (stages of building, types of building / skeleton ,bearing walls , component), Earth works (excavation, filling, stability of excavation, drainage of water, soil compaction), Foundations works (types of soil, soil classification, types of foundation, settlement of foundation, types of settlement), Piles works (uses ,kinds of piles according to materials manufactured and loads transmitted , load tests), Concrete works (composition of concrete, aggregates properties and grading, types of cement, local martials), Characteristics of concrete (compressive, tension, shear and bending strength, laboratory tests, admixtures, types of admixture), Brick works (types of brick according to materials and their shapes, stages of manufacturing, engineering properties), Uses of brick in building construction (types of bonding: heading, stretching, bull, English, Flemishetc.), Masonry works (stones) / origin of stones, uses of stones in building construction, engineering characteristics, Types of rocks (geological classification, igneous, sedimentary and metamorphic rocks, engineering properties), Forms scaffoldings, Means of moving between levels (types: stairs, ramps, moving stairs, lifts, materials: metallic and concrete ...etc., Doors: (definition, functions, types and materials), Windows: (definition, functions, types, and materials), Doors: (types basics: side suspend, sliding vertical and horizontal, rotary, accordion, materials; wooden, metallic and poly plastic materials ,properties of materials), Windows: (types basics: wooden, metallic and poly plastic materials, properties of materials, Practice: work shop, Columns @ Beams, Isolation materials, Floors @ roofs (materials, properties, types of loads, cast in situ, precast, prestressed ... etc.), Finishing (definition, functions, finishing of outside and inside. Materials and their properties).

- انشاء المباني للمؤلفين آرتين ليفون و زهير ساكو
- انشاء المباني للمؤلف عاطف السهيري
- Building construction Rangwala.

Subject	Free Hand Drawing	No. of Hours	4	No. of Units	5
					(

- Developing thestudents' skills in various medium, focusing on proportion and values of lighting degrees, still life and human figure.
- Develop the in-site sketching skills, Field trips and studio setting.

Creating Simple shapes and Objects, Draw Basic Shapes (1 cube Perspective) with pencil, Draw Basic Shapes (2 cube Perspective), Draw Basic Shapes (1 cylinder Perspective) with shade and shadow, Exam Drawing Basic Shapes (still life cylinders and cubes), Draw geometrical forms (spherical forms) , Draw geometrical forms (ununiformed forms), Exam Drawing geometrical forms (still life forms), Draw geometrical forms (ununiformed forms with different materials) 3D building drawing and elevation studies using shade and shadow with Perspective., Outside building drawing(1), Learning how to use wood color , Still-life with wood color, Outside building drawing with wood color(2), Learning how to use ink pens , Still-life with ink pens, Outside building drawing with ink pens(3), Exam Drawing Outside building with different techniques ., Landscape Drawing using pencils, Landscape Drawing using wood color.

- "Sketch Examination" by Sumiao Jingwe.
- Freehand Drawing and Discovery: Urban Sketching and Concept Drawing for Designers, James Richards.
- Freehand Sketching by Paul Laseau.

Subject	Architectural Debate	No. of Hours	2	No. of Units	0				
Course Oh	Course Objectives:								
• Debaui educati	onal skills and critical-thinki	ng skills	ects nei	ps students	develop				
• Learn	tolerance for opposing vie	wpoints and 1	build the	eir sense of	personal				
express	sion and self-esteem.	-							
Debating i	n classrooms and for studen	t projects help	s student	s develop edu	ucational				
skills and	critical-thinking skills, learn	tolerance for (opposing	viewpoints a	nd build				
their sense	of personal expression and s	elf-esteem.							
The studer	nt (debater) learns to use a l	ibrary, and to	find the	exact inform	ation he				
needs in th	e shortest possible time. The	student learns	to be sm	art and accura	te in his				
exposition	of an issue. He learns to a	analyze and to	o disting	uish between	what is				
important a	and crucial								
What is not? He learns the need of provinghis statements; of supporting everystatement									
with valid e	vidence and soundreasoning (b	eing logical).							

- Debating: A Brief Introduction for Beginners", Debating SS Incorporated, 2008.
- "Debating", Simon Quinn, Jan. 2005.
- Different In-field web sites- "www.learndebating.com".

Subject	Mathematics & Statistics	No. of Hours	2	No. of Units	4			
		<u></u>						
Course Objectives:								
• Present	basic mathematic concepts a	and show how t	to deal w	ith problems.				
Provide	the students with a review an	nd reference fo	r mather	natical technic	ques you			
will nee	ed in your mathematical cour	se.						
• Allow the students to perform the mathematical manipulations necessary for a particular problem without getting bogged down in lengthy derivations.								
Functions,	Types of functions, Operations, Craph of Trigonometric f	on of functions	,Functio	ons of A. value	e, Graph			
algebraic t	function Def Trigonometric	ric functions E	li ui Expu Dower fui	nction Speci	al case			
Properties	Limit of function Defin	ition Limit of	functio	n Solving e	an ease,			
Continuity	and Differentiability. Det	rivations. Defi	nitions.	Rules. Deriv	ative of			
different	functions(polynomial, Tri	gonometric.).	Derivati	ve of Exp	onential.			
Hyperboli	c & inverses functions, Parti	al Derivatives,	Integrat	ion ,Definition	n, Rules,			
Integration	1 of Trigonometric, Integrat	tion of Expone	ential fu	nctions, Tech	nique of			
Integration	n, Basic integration formulas	s, Integration b	y parts ,	rational func	tions by			
partial fur	nctions, Double and Triple	integrations, N	latrix, de	efinition, dete	rminant,			
solve the e	equations, Vector, Introduction	on, vectors in sp	bace.					
References:								
• George	B. Thomas, Jr. "Internationa	l Edition 11 th ,2	2005.					

- Frank E. Junior and Fillip Schmidt, "Calculus", 1990.
- Schaum's out lines, "Advanced calculus", second edition.

Subject	Descriptive Geometry	No. of Hours	3	No. of Units	4
---------	----------------------	--------------	---	--------------	---

- Training of three dimensional imaginations.
- Deal with drawings using tools or by free hand.
- Dealing with different ways of projection, for architects should always be able to choose the most adequate and reasonable way of projection suiting the respective purpose.

Introduction, First Trail to use free hand lines, Using Compose, Using Tools, Point system of projection, Central Projection, Orthogonal projection, Side top and front views, Horizontal and Vertical Planes, H.P and V.P. and Side/ Profile Plane, Projections/ and construction lines, Planes and Projection Review, Introduction II, 3D isometric for cube, 3D isometric for cylinder, 3D Isometric for complicated objects, 3D Isometric for complicated objects II, Training on taking different 3D drawings from 2d projection, Training on taking different 3D drawings from 2d projects, H.P. + V.P. + S. P.

- Book:Descriptive Geometry.
- Lectures by the Instructor

Second Year

	Second Year									
No	Codo No	Subject	Но	C,						
NO.	COUE NO.	Subject	Th.	Pr.	nit					
1	A.E. 201	Architectural Design II	2	8	12					
2	A.E. 202	Perspective and Shadow	1	2	4					
3	A.E. 203	Buildings Construction II	1	2	4					
4	A.E. 204	Principles of Architecture	2	0	4					
5	A.E. 205	History of Architecture I	2	0	4					
6	A.E. 206	Free Hand Drawing II	1	3	5					
7	G.E. 207	Computer CAD I	1	1	3					
8	A.F. 208	Mechanics and Strength of	2	0	4					
		Materials			•					
9	G.E. 209	Surveying	1	1	3					
			13	17	43					
		Total Hours	3	0						

A.E. = Architecture Engineering

G.E. = General Engineering

Subject **Architectural Design II** No. of Hours 10 No. of Units 12 **Course Objectives:** • Introduce the students to architectural draft, abstract composition. • The focus will be to analyze pervious design studies to understand architectural concept of local culture, plus issues that are sensitive to the integration of environment, locale architecture, and application of architecture. Introduction (Family house, Villa): Site Visit, Examples, Data Gathering, Site Analysis, Final Report, Day Sketch, Concept, Final Concept, Plans – Sections, Final Plan, Sections, First Prelim demand (Site Plans), First Prelim demand (Sections), Model, General criticism, Plans – Elevations, Final Plan, Day Sketch, Pre-final, General criticism, Final, Introduction (Museum for Peshmarkah): Examples, Data Gathering, Site Analysis, Final Report, Day Sketch, Concept, Final Concept, Plans – Sections, Final Plan, Sections, First Prelim demand (Site Plans), First Prelim demand (Sections), Model, General criticism, Plans – Elevations, Final Plan, Day Sketch, Pre-final, General criticism, Final **References:** Architects Data – Ernst Neufert. •

- Housing John Macsai.
- Timesaver for Building Type Joseph De Chaira &John Callender Design with confidence step by step- Mike W.Lin Asla.

Subject	Free Hand Drawing II	No. of Hours	4	No. of Units	5
---------	----------------------	--------------	---	--------------	---

- Develop the in-site sketching skills and creative expression to build environment.
- Develop the student's skills in using watercolors, poster, pastel, oil colors in advanced techniques.

• Develop the student's ability to control the complex shapes in advanced techniques.

Definition ores water colors, colors, brushes and special drawing watercolor paper. With direct application in front of the students and the definition of the specificity of the colors in each type and the emphasis on the differences between covered colors and transparent colors with examples and models. Extract bilateral, trilateral colors and application of exercise on it with emphasis on the intensity of the color. Review the tonal relationships guided wheel colors, contrasting colors and harmonious and talk about primary and secondary colors and neutrality. And guide students to avoid the use of black and white color found in cans of water colors. Implementation drawing by one color with teaching students how to achieve shade tones and hue, Through the still life model. Implementation of drawing inside the studio (still life) by using all colors. Implementation of drawing inside the studio by using plants, fruits with the clay form or ceramic. Drawing trees from nature with watercolor. Implementation of drawing from nature provided that there is a relationship between vegetation, walls and architectural details landscape. Drawing inside the studio (still life) with existence of a variety materials, with emphasis on the completion complete drawing with back round. Implementation drawing outside the studio for architectural elevations. Exercise in the studio for model in glass and shiny materials to learn how to draw a transparent materials and optical reflections. Implementation of drawing inside the studio for more complex model with cloth background. Study the Figures through model and the use of simple water colors. Drawing by colored pencils, quick layouts for figures with different movements, with a quick drawing for face human. Drawing inside the studio to the nature still life by using wooden colored pencils. Drawing buildings outside by using vanishing points and implementation by ink pens and wooden colored pencils. Layouts for quick rigid life still life using watercolors and ink pens. Identify the ores of mud and make models which make sure the relationship between mass and space. Make models by mud. Drawing by poster colors the form inside the studio. After the presentation by definition poster colors and separation between them and watercolors. Drawing by poster colors the form inside the studio. Perspective drawing of the elevations with coverage the all areas in the subject by color. Perspective drawing of the architectural details with coverage the all areas in the subject by color. Drawing Furniture with colors Draw a piece of furniture with ornamental plants. The end of the second course exam and provide an opportunity for the student to choose material implementation of the action.

References:

• Still Life (step by step art school), By Buchan Jack and Baker Jonathan.

• Landscaper (step by step art school), By Buchan Jack and Baker Jonathan.

Subject	Principles of Architecture	No. of Hours	2	No. of Units	4

Course Objectives:

- Understand conceptual elements of which architectural artefacts is composed.
- Know the definitions of these conceptual elements.
- Identify architectural artefacts that illustrate these elements
- Understand the systematic thinking and logical inference techniques and principles used in solving architectural design problems.
- Understand the phases of architectural design phases in different methodological approaches used in field of architecture.
- Apply certain methods and techniques in solving simple architectural problems.

Architecture as the Identification of Place: Introduction, Place Identifying, Conceptual Elements/ Horizontal Elements, Place Identifying Conceptual Elements / Horizontal Elements, Place Identifying Conceptual Elements / Vertical Elements, Place Identifying Conceptual Elements / Vertical Elements, Openings in Place, Defining Elements, Modifying Conditions of Architecture, Modifying Conditions of Architecture, Place Ordering Principles,

Design Methodology in Architecture: Introduction, Black Box Methodology in Architectural design, Glass Box Methodology in Architectural Design, Architectural Design Process/ Analysis of Design Problems, Space Adjacency Analysis, Architectural Design Process/ Synthesis of Design Solutions, Architectural Concept Generation/ Different Approaches, Analogy as an Approach for Concept Generation, Analogy as an Approach for Concept Generation.

- Unwin, Simon, 2003, "Analyzing Architecture", Taylor & Francis e-Library.
- Ching, Francis, 2007, "Architecture: Form, Space & Order", John and Wiley & Sons, Inc, New Jersey.
- "أساليب التحليل المنهجي للتصميم المعماري"، احمد محمد شهاب. •

Subject	Building construction II	No. of Hours	3	No. of Units	4

- Clarify the vocabulary of structural elements and terms of building for the student by discussing each element or building system and all the details of the construction project with the student to strengthen his information.
- Teach the student how to design and draw a detailed construction of the building in terms of information to link the structural method and the accuracy of the drawing.

Introduction to Types of systems in construction: Elements of structure, Foundation, Ground floor plan 1/50, Ground floor plan&1st floor plan 1/50 (with details), Site Visiting, Foundation plan 1/50, Sections 1/50, Prelim presentation, Elevations 1/50, Criticism, pre final presentation, Criticism, Final presentation.

Introduction to Details of structure :Foundation Details 1/10, Stairs Details 1/10,

Windows Details 1/10, Doors Details 1/10, Roof plan with parapet detail 1/50+1/10,

Electrical plan 1/50, Sewerage plan 1/50, Criticisms, Final presentation.

- Building Construction Illustrated by Francis D. K. Ching.
- Building Construction Handbook by R. Chudley, Roger Greenoy.
- Neufert Architects Data.

	Subject	Mechanic and Strength of Materials	No. of Hours	2	No. of Units	4
--	---------	---------------------------------------	--------------	---	--------------	---

- Understand the principle of analysis many structural members which used in constructions as trusses, beams, plates ect.
- Study the fundamental concepts of mechanics that related to engineering problems.
- Introduce and understand the behavior of various engineering structure such as beams, plates, trusses under different actions.

Force analysis, Normal force, Shear force, Force due to uniformly distributed loads, Normal and shear stresses, Balance of force, Temperature stress, Trusses, Strain energy due to normal stress, Strain energy due to shear stress, Elasticity modulus E, Rigidity modulus E, Hook's law, Shear force and bending moment/sign convention, Shear force and bending moment/Diagrams, Shear force and bending moment/standard cases, Shear force and bending moment/subjected to a various load, Stresses in beam/relation between B.S. and radius of column, Stresses in beam/relation between B.S. and radius of column, Theory of simple bending, Moment carrying capacity of a section, Shearing stress of beam /general cases, Shearing stress across standard sections , bolt up section, Torsion /compound stresses, Torsion /mohr's circle, Thick cylinder and spheres, Thick cylinder and spheres/compound C, Column and struts.

- Strength of materials Second Revised Edition S. S. Bhavikatti.
- Mechanics of Materials Second Edition E. P. Popov.
- Mechanics and Strength of Materials Victor Dias Da Silva.

History of Architecture I No. of Hours

Subject

No. of Units

4

2

Course Objectives:
 Knowing the evolution of the first civilizations such as the Mesopotamian architecture and the valley of the Nile architecture and their architectural patterns and settlement. The students will be able to have the essential knowledge about each civilization, its architecture characteristics, invention they have, materials been used and methods and techniques they developed.
• The students will be able in brief to distinguish between the different orders and architecture styles and use it in the suitable location.
Introduction, Pre-History, Early Civilization, Mesopotamia, Early Egypt, Egypt at
the Middle, After Egypt, Greek and Pre-Greek, Greek at the peak, Essay, Writing
and Presentations, Buddhism, Early Romans - East, Romans- West, Rome legacy,
Early Christianity, Christianity, Islam introduction, Islam legacy, Middle Ages I,
Middle Ages II, TBD.
References:
• 1000 years of Residential Design.
• History of Architecture.

SubjectPerspective & Sha (Graphics)	W No. of Hours	3	No. of Units	4
--	----------------	---	--------------	---

- The students will learn the basics for drawing isometric and perspective accurately.
- Practical training on Isometric and oblique drawing.
- Practicing on perspective with one vanishing point.
- Practicing on two vanishing point perspective.
- Trying to draw complicated forms in perspective view.
- Drawing 3D perspective for their architectural design project.

Introduction and Course Overview: Basic Terms and Definitions, Fundamentals of Perspective, Two Point Perspective, Exercise I (Basic), Two Point Perspective, Exercise II (Inclined lines), How to draw a Pyramid (Determining the height), More complicated objects, Perspective of Inclined Service, Circular Objects, Drawing Stairs, One point perspective

Shade and Shadow: Terms and Definitions, Fundamentals of Shadow, Shadow of Point and Line, Shadow of Plane, Shadow of Cube, Multi Face Object, Shadow on Inclined surface, Shadow on Stairs, Shadow of Plan and Elevation, Shadow in Perspective.

- Architecture: Form, Space, and Order by Francis D. K. Ching.
- Architectural Graphics by Francis D. K. Ching.
- Architectural Standard Ernst & Peter Neufert.

Subject	Computer (AutoCAD 2D)	No. of Hours	2	No. of Units	3	
 Course O Enable Useful Generation or space 	 Course Objectives: Enables the students to draw full details of plan. Useful for modifying and developing the 2D plans. Generally it helps the students to translate what's in their minds into virtual plan or space. 					
Getting st application snap, orth commands , mirror commands Complex area, vo Advanced freeze, or Edit comm hatch edite , burge Dimension Print & p	arted with Auto CAD: intro n, ribbon, tools, Drawing to, grid, osnap, Drawing set s 1: move, copy, offset, ex- , Alteration commands 1: h s 2:polar array, stretch, leng objects : polyline, spline, m lume, Advanced display display command : transpare n, off, color, Annotation nands 3: rectangle, polygon e, Rejoin & boundary co ., Design center & tool pale n : vertical, radial, allgined. plan.	duction, histor g basics : line, etup : dynamic tend, Edit co preak, fillet, o then. nultipleline ay command ent, multiple c on objects :anr n, ellipse, do mmand, Bloch ttes, Grips : se , Views & complete simp	cy , User circle , at input , zo mmands 2 chamfer , , Utility & chamfer , , Cro	interface : n rc, Drawin oom , unit 2: rotate , trin explode, Al & inquiry : di rent , multip aging layers : ls , text , tabl osshatching : ributes :make y with setting ts & inserting , Drawing c	nenus :- ng aids : ., Edit n, align teration stance, le cov, layers, let, hatch, e. insert g, g image, omplete	
Reference	 2 S:					

- User manual of Auto CAD program.
- <u>E_book</u>: http://www.dailyautocad.com/2014/01/e_books.html
- E_magazine: http://www.almohandes.org

Subject	Surveying	No. of Hours	2	No. of Units	3		
	• ,•						
• Find th) Jecuves: e students' ability to deal wit	th the surveying	works in	the practical	sitas		
 Identify 	ving the engineering concept	the surveying	ield of si	i ule praeticai irveving engir	sucs. ieering		
that are	related to the architectural	engineering wor	ks throug	gh designing,	leering		
implem	enting and checking out the	work.					
General Introduction to the Surveying science: (Definition, Importance of survey							
in engineer	ing projects, department of	survey, types of	survey).				
Measuren	ent of the length: (metho	ds of measuren	nent by	step, meterga	ge, cloth		
tape, and s	teel tape, ranging rods, peg	s, plump v ,units	s of meas	surements and	, scale),		
Practical (1	inear measurement (Ex. 1).						
Measuren	ent of distances: (direct a	and indirect me	asureme	nt of distance	, putting		
ranging ro	ds at straight line:* in cas	se of fission th	e last p	pint and non-	fission,		
measureme	ent of distance in case of I	horizontal land	with litt	le dip and in	case of		
inclined la	nd)., Practical.				1 1 0		
Measurer	nent of angles by tape perp	pendicular and	others, l	Determination	depth of		
wells, heig	nt of buildings, chain survey	libration and to	at of law	1 annliastion	of lovel		
Level inst	ruments: type of levels, ca	indration and tes	st of leve	er, application	of level		
Objects). of proporing contour !	inos. Dofinitio	on 11606	of contour	r mone		
characteris	tics of contours methods of	contouring Pra	$r_{\rm ctical} = c$	sontours map	and earth		
work com	utes of contours, methods of	contouring, 11a					
Computati	on of area from field note	s and from plo	tted plar	volume fro	m cross		
sectional a	sectional area from spot level and from contour lines. Types of angels, theodolite						
instrument	instrument total station and horizontal angles. Principle of the Global Position						
System (G	PS), Aerial surveying and m	odern means of	surveyin	g			
Reference	s:						
• Elemen	tary surveying / BRINER .R	.C @ WALF .P	.R.				
ح جز ماتی 🔹	المساحة و الجيوديزيا / د بسام						

المساحة المستوية / د فوزي الخالصي

Third Year

	Third Year						
No	Code No	Subject	Но	ç			
NO.	coue no.	Subject	Th.	Pr.	nit		
1	A.E. 301	Architectural Design III	2	8	12		
2	A.E. 302	Theory of Structures	2	0	4		
3	A.E. 303	Working Drawings	1	3	5		
4	A.E. 304	History of Architecture II	2	0	4		
5	A.E. 305	Concrete and steel Design	2	0	4		
6	A.E. 306	Planning and Housing	2	0	4		
7	G.E. 307	Computer (Auto CAD 3D)	0	2	2		
			11	13	35		
	Total Hours 24						

A.E. = Architecture Engineering

G.E. = General Engineering

Subject	Architectural Design III	No. of Hours	10	No. of Units	12	
 Course Objectives: The student will identify the compound and multifunctional projects concerning their used and different service spaces. Students will learn to analyses different functions and zones in the buildings and understand and adjust the architectural program. Students will further learn to incorporate multiple functions and services in a building, 						
Introduction (Centre for culture and Art), Site Visit, Data Gathering , Examples, Site Analysis, Final Report, Day Sketch, Concept – First Present, Final Present, Plans, Concept to Plan, Final Plan, Day Sketch, Final Plans Present, Day Sketch Elevation, Plan to Elevation, Pre-final, Elevation, Final, Introduction (Secondary School), Site Visit, Data Gathering , Examples, Site Analysis, Final Report, Day Sketch, Concept – First Present, Final Present, Plans, Concept to Plan, Final Plan, Day Sketch.						
Reference	s:					
• Neufert	Architects' Data, Fourth Edi					

SubjectWorking Drawing (Building III)No. of Hours4No. of Unit
--

- Educate the students the techniques and traditional and modern methods of construction.
- The students will be able to work, read the working and architectural drawings and learn the technical details of their own.

Skeleton building system, Advantage & disadvantage, Elements of skeleton building sys., Kinds of construction grid, Kinds of column / Kinds of girder, roofs & floors concrete slap, Elevators, Foundations in skeleton building, Pre-Fabrication: Introduction to pre- fabrication technology, advantages of prefabrication, Pre- fabrication techniques and various building components– panel system / box system, column and beam system, foundation, walls, Type of pre-cast floors& roofs 1st, Type of pre-cast floors& roofs 2nd, Pre-cast staircase, Final project, Frame System Type of Frame System, Portal Frame System, Trusses of various types, North Light Factories, Shell-Light Structure, Space Frame Grid, Suspended system roof, Detailing of structural steel with connections for beams, stanchions, stairways, plate girders, Detailing of structural steel with connections for beams, stanchions, stairways, plate girders.

- "Building Construction", vol. 3, by barry, 1997.
- Working drawing handbook.
- "Structure and fabric", by Mitchel.
- . تركيب المباني الأبنية الهيكلية، أنيس جواد، 1987، الجامعة التكنولوجية •
- "Precast Concrete Construction", by Svetlana Brzev, British Columbia Institute of Technology, Canada.

 Course Objectives: Enable the students to analysis (calculate the forces and determations) of different type of structures (beams, tresses, frames) both determinate and indeterminate. Enable the students to have a clear vision about each type of structures and where to be used in the designed structures. Stability and determinacy of structures, Stability and determinacy with respect to supports, Statically determinate beams, Shear and bending diagrams, Statically determinate complex trusses, Statically determinate raised frames, Statically determinate complex trusses, Statically determinate raised frames, Statically determinate structure, Elastic deformation of structures, Method of virtual work (beam), Method of virtual work (trusses), Method of consistent deformation (beam)and (frame), Method of consistent deformation (trusses) 	Subject	Theory of Structures	No. of Hours	2 No. of Uni	its 4		
 Course Objectives: Enable the students to analysis (calculate the forces and determations) of different type of structures (beams, tresses, frames) both determinate and indeterminate. Enable the students to have a clear vision about each type of structures and where to be used in the designed structures. Stability and determinacy of structures, Stability and determinacy with respect to supports, Statically determinate beams, Shear and bending diagrams, Statically determinate simple trusses, Statically determinate compound trusses, Statically determinate complex trusses, Statically determinate raised frames, Statically determinate structure, Elastic deformation of structures, Method of virtual work (beam), Method of virtual work (trusses), Method of virtual work (frames), Analysis of statically indeterminate structure, Method of consistent deformation (trusses) Slope –deflection method: (Slope –deflection method (beam), Slope –deflection 							
 Enable the students to analysis (calculate the forces and determations) of different type of structures (beams, tresses, frames) both determinate and indeterminate. Enable the students to have a clear vision about each type of structures and where to be used in the designed structures. Stability and determinacy of structures, Stability and determinacy with respect to supports, Statically determinate beams, Shear and bending diagrams, Statically determinate simple trusses, Statically determinate compound trusses, Statically determinate complex trusses, Statically determinate raised frames, Statically determinate composite structures, Approximate analysis for statically indeterminate structure, Elastic deformation of structures, Method of virtual work (beam), Method of virtual work (trusses), Method of consistent deformation (beam)and (frame), Method of consistent deformation (trusses) Slope –deflection method: (Slope –deflection method (beam), Slope –deflection 	Course Ob	bjectives:	and a share the for	and datama	ationa) of		
 indeterminate. Enable the students to have a clear vision about each type of structures and where to be used in the designed structures. Stability and determinacy of structures, Stability and determinacy with respect to supports, Statically determinate beams, Shear and bending diagrams, Statically determinate simple trusses, Statically determinate compound trusses, Statically determinate composite structures, Approximate analysis for statically indeterminate structure, Elastic deformation of structures, Method of virtual work (beam), Method of virtual work (trusses), Method of virtual work (frames), Analysis of statically indeterminate structure, Method of consistent deformation (beam)and (frame), Method of consistent deformation (trusses) 	• Ellable differen	it type of structures (bear	ns, tresses, fram	es) both determ	ninate and		
 Enable the students to have a clear vision about each type of structures and where to be used in the designed structures. Stability and determinacy of structures, Stability and determinacy with respect to supports, Statically determinate beams, Shear and bending diagrams, Statically determinate simple trusses, Statically determinate compound trusses, Statically determinate complex trusses, Statically determinate raised frames, Statically determinate structure, Elastic deformation of structures, Method of virtual work (beam), Method of virtual work (trusses), Method of virtual work (frames), Analysis of statically indeterminate structure, Method of consistent deformation (beam)and (frame), Method of consistent deformation (trusses) Slope –deflection method: (Slope –deflection method (beam), Slope –deflection 	indetern	indeterminate.					
Stability and determinacy of structures, Stability and determinacy with respect to supports, Statically determinate beams, Shear and bending diagrams, Statically determinate simple trusses, Statically determinate compound trusses, Statically determinate complex trusses, Statically determinate raised frames, Statically determinate composite structures, Approximate analysis for statically indeterminate structure, Elastic deformation of structures, Method of virtual work (beam), Method of virtual work (trusses), Method of virtual work (frames), Analysis of statically indeterminate structure, Method of consistent deformation (beam)and (frame), Method of consistent deformation (trusses) Slope –deflection method: (Slope –deflection method (beam), Slope –deflection	• Enable the students to have a clear vision about each type of structures and where to be used in the designed structures.						
Stability and determinacy of structures, Stability and determinacy with respect to supports, Statically determinate beams, Shear and bending diagrams, Statically determinate simple trusses, Statically determinate compound trusses, Statically determinate complex trusses, Statically determinate raised frames, Statically determinate composite structures, Approximate analysis for statically indeterminate structure, Elastic deformation of structures, Method of virtual work (beam), Method of virtual work (trusses), Method of virtual work (frames), Analysis of statically indeterminate structure, Method of consistent deformation (beam)and (frame), Method of consistent deformation (trusses)		where to be used in the designed structures.					
supports, Statically determinate beams, Shear and bending diagrams, Statically determinate simple trusses, Statically determinate compound trusses, Statically determinate complex trusses, Statically determinate raised frames, Statically determinate composite structures, Approximate analysis for statically indeterminate structure, Elastic deformation of structures, Method of virtual work (beam), Method of virtual work (trusses), Method of virtual work (frames), Analysis of statically indeterminate structure, Method of consistent deformation (beam)and (frame), Method of consistent deformation (trusses) Slope –deflection method: (Slope –deflection method (beam), Slope –deflection	Stability ar	nd determinacy of structure	s, Stability and d	eterminacy with	respect to		
determinate simple trusses, Statically determinate compound trusses, Statically determinate complex trusses, Statically determinate raised frames, Statically determinate composite structures, Approximate analysis for statically indeterminate structure, Elastic deformation of structures, Method of virtual work (beam), Method of virtual work (trusses), Method of virtual work (frames), Analysis of statically indeterminate structure, Method of consistent deformation (beam)and (frame), Method of consistent deformation (trusses) Slope –deflection method: (Slope –deflection method (beam), Slope –deflection	supports, S	Statically determinate beam	ns, Shear and ber	nding diagrams,	Statically		
determinate complex trusses, Statically determinate raised frames, Statically determinate composite structures, Approximate analysis for statically indeterminate structure, Elastic deformation of structures, Method of virtual work (beam), Method of virtual work (trusses), Method of virtual work (frames), Analysis of statically indeterminate structure, Method of consistent deformation (beam)and (frame), Method of consistent deformation (trusses) Slope –deflection method: (Slope –deflection method (beam), Slope –deflection	determinate	e simple trusses, Statically	determinate cor	npound trusses,	Statically		
determinate composite structures, Approximate analysis for statically indeterminate structure, Elastic deformation of structures, Method of virtual work (beam), Method of virtual work (trusses), Method of virtual work (frames), Analysis of statically indeterminate structure, Method of consistent deformation (beam)and (frame), Method of consistent deformation (trusses) Slope –deflection method: (Slope –deflection method (beam), Slope –deflection	determinate	e complex trusses, Statica	ally determinate	raised frames,	Statically		
structure, Elastic deformation of structures, Method of virtual work (beam), Method of virtual work (trusses), Method of virtual work (frames), Analysis of statically indeterminate structure, Method of consistent deformation (beam)and (frame), Method of consistent deformation (trusses) Slope –deflection method: (Slope –deflection method (beam), Slope –deflection	determinate	e composite structures, Appr	roximate analysis	for statically ind	eterminate		
Method of virtual work (trusses), Method of virtual work (frames), Analysis of statically indeterminate structure, Method of consistent deformation (beam)and (frame), Method of consistent deformation (trusses) Slope –deflection method: (Slope –deflection method (beam), Slope –deflection	structure,	Elastic deformation of str	ructures, Method	of virtual wor	k (beam),		
statically indeterminate structure, Method of consistent deformation (beam)and (frame), Method of consistent deformation (trusses) Slope –deflection method: (Slope –deflection method (beam), Slope –deflection	Method of	f virtual work (trusses), Me	ethod of virtual w	vork (frames), A	nalysis of		
(frame), Method of consistent deformation (trusses) Slope –deflection method: (Slope –deflection method (beam), Slope –deflection	statically in	indeterminate structure, Me	thod of consisten	t deformation	(beam)and		
Slope -deflection method: (Slope -deflection method (beam), Slope -deflection	(frame), Me	lethod of consistent deforma	ation (trusses)				
	Slope -def	flection method: (Slope -de	eflection method	(beam), Slope -	-deflection		
method (frames))	method (fra	rames))					
 References							

- "Elementary theory of structures", Yuan-Ya Hsieh.
- "Elements of the theory of structures", Jacques Heyman.

Subject	Planning and Housing	No. of Hours	2	No. of Units	4
---------	----------------------	--------------	---	--------------	---

- Help the students to identify the developments that happened in the history of cities development and growth through the passage of time including the social, economical and technical effects.
- Understanding the Design and planning Criteria of Housing Projects.
- Studying the housing policies and strategies.

Introduction and history back ground about housing, Housing concept, terminology and definitions, Housing Form The idea of Neighborhood, Neighborhood structure, Residential Structure, Type of dwellings, Circulation and open space in the Neighborhood, Privacy Hierarchy and services in the housing, Sustainable housing development and Design, Site visiting, Excursion Housing policy and Strategies, Density and the advantages of high density Housing problem in Kurdistan and the governmental solutions, Role and regulations about housing in KRG, Learning from tradition to improve housing design.

Introduction to Planning (What is plan, Planning, who is planner and why planning is important, General introduction), Key concepts in planning (planning levels, participation, decentralization, space, urban-rural, Infrastructure, Land Management, regional planning), Major phases of Urban History (e.g. Agriculture, Pre Industry and industrialization), Ancient cities and urban civilization in Mesopotamia, Cities in medieval ages, Islamic cities, Global cities, cities Post war urban development, Tape of City, cities Urban development after WWI in Iraq, Principle of planning and Sustainable planning, Settlements Patterns, Relationships Between Human and Settlements, Land use planning zoning and tools, land use development, City challenges and hot issues (e.g. sustainability, poverty, traffic jam, services and infrastructure)

- Mike Biddulph(2007): Introduction to residential Layout, Published by Elsevier Limited.
- Avi Friedman (2007): Sustainable Residential development: Planning and

Design for Green Neighborhood.

• Pacione, M. (2005): Urban geography: a global perspective. London etc., Routledge.

Subject

History of Architecture II

No. of Hours

No. of Units

2

4

Course Objectives:

• Illustrate the adoption of the comparative analysis method and the distinction among the various architectural styles throughout history on the bases: The geographical location, the historical values, the climatic and geological description, and other of arts.

Introduction to the Renaissance era, Table of the comparative system for each style Comparative Analysis, Gotic Architecture, Byzantine Architecture, Italy homeland Renaissance, Geographical social Architectural character Pioneers Renaissance, Philipo Brunlleschi(1446 - 1377), Study Architectural for church Santa Maria delfiore, Study Architectural for church Santa Lorinzo Leon Battista Alberti(1472 - 1404), Study Architectural for church Santa Arsdicia, Study Architectural for Palazzo Rucellai, Donto Bramant(1514 - 1444), Study Architectural for Montorio in Rome, Study the concept to Mannerism, Study Architectural to (Michel Angelo), Study Architectural for church santo lorinzo, Gollio Romanic(1546 - 1499), Study Architectural for library in Sainlorinzo, Study Architectural for conservators, Palace and Senator's Palace Contributions Michel Angelo in cathedral Saint Pietro, Barocco and Rococo, Style new classic.

- Peter Murray, renaissance Architecture, New York, 1985.
- Henry Millon, Barque and Rococo Architecture, New York, 1985.
- A. W. N. Pugin, The true principles of Pointed or christain architecture, New York, 1973.

Subject

Concrete and Steel Design

No. of Hours

2

No. of Units

4

Course Objectives:

- Establish a successful arch. engineer who can use techniques skill to identity formulate and analyze problem and design concerning reinforced concrete and steel structural members.
- Teach the students the behavior and design of steel sections

Concrete and reinforced concrete chareters, Quality control and stress-strain curve, Ultimate strength design method, Flexural strength of R.C beam, Design of single R.C rectangular section, Under-reinforced beams, Over-reinforced beams, Design of one –way slabs, Design of doubly reinforced beams, Design of T –beams, Shear strength of beams, Continous beam and Continous one way slab, Columns design (axially louded), Columns design (bending moment and axial load, Long columns design, Foundation design, Steel products, philosophies of design, Tension members, Pin-connected members, Bolted and riveted connections, Welded connections, Beam design (flexural strength), Beam design(shear strength), Beam design(detiection limitation), Compression members, Column design, Design of bearing plates.

- B.M Ferguson, J.E Breen, and J.O Jirsa, "Reinforced Concrete Fundamentals".
- A.H Nilson and G.Winter, "Design Of Concrete Structures "
- Gaylord And Gaylord, "Steel Structures."
- Aisc Manual.

|--|

- It make students have ability to draw anything (2D) by this program (plans, elevations, sections, free drawings and good rendering with animation video.
- Prepare the students to render and animate projects by Vray 3ds max.
- -----

The plan of course and references & history of 3ds max program, Explanation the main window for program, how to arrange it before start work, how to use object and change its parameters, how to use object and change its parameters, how to use shape and change its parameters, how benefit from the AutoCAD program and link it to 3ds max program, how to use materials and change its parameters, Camera basics(types and descriptivism), Lighting basics(external lighting with sun light), Lighting basics(interior lighting with natural light, Rendering, Rendering (environment, output ,light cache, common), RPC & Blocks.

- "Vray 3ds max program 2013", By James Wedding, P. E. and Dana Probert, E. I.T.
- "3ds max LT for DUMMIES", BYMark Middlebrook, 2010.

Fourth Year

	Fourth Year								
No	Code No	Code No. Subject		Hours					
NO.		Subject	Th.	Pr.	nit				
1	A.E. 401	Architectural Design IV	2	8	12				
2	A.E. 402	Urban Design	2	0	4				
3	A.E. 403	Interior and Landscape Design	1	3	5				
4	A.E. 404	Theory of Architecture	2	0	4				
5	<mark>GE.</mark> 405	Engineering Services	2	0	4				
6	A.E. 406	Architectural Environment and Acoustics	2	0	4				
7	A.E. 407	Advanced Building Technology	2	0	4				
			13	11	37				
		Total Hours	2	4					

A.E. = Architecture Engineering

G.E. = General Engineering

Subject	Architectural Design IV	No. of Hours	10	No. of Units	12
Course O	bjectives:				
The curri the archi	culum of the architectural de tectural student's recognition	sign of the four s and to depart	th year a from the	aims to enlarge e thinking of a	single
identifica	es how to relate the single protection of the basics of dealing y	oject with the c	ity urbai lesign ar	n fabric throug	h the
city urba	In fabric and the stretching of and the impact of the	f the visual and urban fabric ch	physica aracteris	ll axes found in stics.	n them
Reference	es:				

Subject	Interior & Landscape Design	No. of Hours	4	No. of Units	5

First course: Interior Design

The aim is to identify the students with the most specialized aspects involved in interior design from those aspects in architectural design in general. This is done on two parts: theoretical and Practical both covers :

the intellectual, cultural and artistic trends are taught especially those overlapping with the industrial design, craftsmen production, materials and those trends that overlap with the artistic intellect of ornamenting, services and light systems, pieces of furniture

Second course: Landscape Design

The aim of this subject is the identification of the basic principles of designing the exterior spaces or what could be called the landscape and its integration with the building and the general city scene. The subject deals with the bases and principles that must be considered when selecting the location and projecting the building within it and treating the location problems.

Subject	Urban Design Theories	No. of Hours	2	No. of Units	4

This course is intended to cover the basic principles, definitions, concepts and elements of urban design and their role in the process of urban development. In addition to the process and approaches needed at macro and micro levels, the traditional and current trends in urban design profession, Visual studies, spatial analysis and Conceptual design, Major elements and determinants of urban form and spaces.

Urban design theory deals primarily with public the design and management of (i.e. the 'public environment', 'public space realm' or 'public domain'), and the way public places are experienced and used.

Public space includes the totality of spaces used freely on a day-to-day basis by the general public, such as streets, plazas, parks and public infrastructure. Some aspects of privately owned spaces, such as building facades or domestic gardens, also contribute to public space and are therefore also considered by Urban design theory.

Subject	Advanced Building Technology	No. of Hours	2	No. of Units	4			
Course Objectives:								
The	e subject aims to identify the	students with t	technolog	y as an intelle	ect and			
applica	tion and the building technol	ogy in particul	ar, and its	relationship	with			
architectu	re as a social requirement w	ith the concent	ration on	the ways to u	pgrade			
1	technology from primitiveness and craftsmanship to the modern							
scientific	scientific/industrial technology, within a complementary and comprehensive view							
	in the ar	chitectural act.						
Reference	es:							

Subject	Environmentand Acoustics	No. of Hours	2	No. of Units	4		
	·			•			
Course Objectives:							

First course: Environment

The aim of this subject is to identify the student with a wide database of the whole basic concepts of the reciprocal relationship between the natural environment and architecture.

Second Course: Acoustics

Identify the principles of sound behavior in the enclosed space and the nature of the acoustical phenomenon through the concepts of sound reflection, absorption, diffusion, and penetration in addition to their auditory response concepts.

Subject	Theory of Architecture	No. of Hours	2	No. of Units	4			
Course Objectives:								
	Students have to understand	the difference	between t	he theory and	d the			
	conceptual trend with their	role in the pro	ocess of de	esigning.				
Int	arastad students should have	a prior underst	tanding of		omund			
theory	Each student is responsible f	a prior underso			ory and			
theory.	Each student is responsible i	or attending le	clures, co	ompleting ass	Igned			
reading a	nd actively participates in cla	ass discussions	as well as	s individual r	research			
	and group class presentations.							
Evaluations will be based upon the Student's class participation, their								
contribution to the course, their exams and final writing assignment								
Keference	es:							

Subject	Eng. Services Sanitary & Air-Conditioning	No. of Hours	2	No. of Units	3
---------	--	--------------	---	--------------	---

The objectives of the subject are to introducing the basic principles of buildings services in a little detailing

Sanitary services

Introduced the basic principles of drainage services to students, (design water network, discharge surfaces water, fire networks).

Air-Conditioning :

introduced the basic principles of buildings air conditioning (mechanically and naturally), and most important standard systems internationally and locally, and how to calculate air condoning requirements for different spaces.

The electrical and lighting parts of the syllabus aim to Introduced the basic

principles electrical systems to students including lighting system, electrical power distribution system,

communication system and intercom system. Try to apply the above mention topics as design projects for the students.

Fifth Year

	Fifth Year								
No	Code No	Subject	Но	urs	Hours		Ur		
NO.	Coue No.	Subject	Th.	Pr.	Th.	Pr.	nit		
1	A.E. 501	Urban Design Infill	1	3	0	0	5		
2	A.E. 502	Design Thesis	2	10	2	12	15		
3	A.E. 503	Professional Practice	2	0	0	0	2		
4	A.E. 404	Specification & Estimation	0	0	2	0	2		
5	A.E. 505	Local Architecture	2	0	2	0	4		
6	A.E. 506	Architecture criticism	0	0	2	0	2		
7	A.E. 507	Philosophy of Architecture	2	0	2	0	4		
			9	13	10	12	34		
	Total Hours				4				

A.E. = Architecture Engineering

Subject	Architectural Design V	No. of Hours	5 One semester	No. of Units	3

This course is to produce a full architectural study about the tended project to cover every detail related to it in a suitable presentation.

The thesis project is the final result of the theoretical and practical architectural knowledge gained by the student through their academic study years. Each student will choose a project to work on continuously during the whole year expressing his intellectual and design approach .

Projects should be related to the local environment and culture either within the future plans of public sector, or environmentally friendly, or of symbolic nature, or housing, or preservation.

References:

Course Objectives:

Subject Design Thesis Project	No. of Hours	14 One semester	No. of Units	8
-------------------------------	--------------	-----------------------	--------------	---

The final project is considered the final stage of the knowledge, which has been given to the student during his years of study, represented by intellectual maturity, the basics of the design work and its belonging to the place and its relation to the values and deep roots of his country, nation, society, tradition and culture and letting the student to express these values through his intellectual and design presentations of the selected project which we emphasize to be one of the real projects proposed by different state offices and which have clear dependable curriculum, or proposed by professors in order to solve a particular problem.

Course Objectives:					
	ledge				
This course is practical urban design aims to give the students the knowl	<u> </u>				
of urban redevelopment. The students will practice dealing with design proble	lems				
related to urban renovation, historical conservation, rehabilitation and infill w	with				
emphasis on infill of a historical area.					
The study will include a field trip to one of the historical sites in Duhok.					
Studying and analyzing the site, the historical, architectural, functional, social and					
environmental dimensions that affect design process.					
References:					

Subject	Estimation &	No. of Hours	2	No. of Units	4

Professional Practice

Course Objectives:

The subject of Estimation aims to identify the student with the executive issues concerning the work of the architect as a coordinator of the whole specializations involved in the implementation works in general and as a producer of the designing works in the presented primary ideas and their economical balancing and then preparing the detailed designs in particular.

While The Professional practice subject aims to identify the student with the basics of practicing the profession and the duties of the architectural engineer towards this profession through his design presentations, first, being as a creative thinker and, second, being as a coordinator and a leader of the working team in his field practice.

Subject	Philosophy of Architectural	No. of Hours	2 One semester	No. of Units	2	
Course O	Course Objectives:					
This	subject aims to fulfill several	educational of	bjectives,	which are im	portant	
to the stu	udent of the primary studies,	in the fifth aca	demic yea	ar as identifyi	ing the	
student v	vith the general principles of	thinking which	n are dealt	t with by phil	osophy	
in its thre	e main fields: the field of kno	owledge, existe	ence and t	he value on t	he basis	
that arc	hitecture is one of the fields	of knowledge	which is s	tudied throug	gh the	
	fields	of philosophy				
Reference	25:					

Subject	Architectural Criticism	No. of Hours	2 One semester	No. of Units	2		
Course Objectives:							
Architecture Criticism is a Theoretical course aims to teach the students the different types of art criticism and the knowledge of Aesthetics and Art appreciation. Through the identification and historical review of Art Criticism theories, the students will get to know the evolution of Art appreciation and							
The students will learn about modern theories in Criticism in Architecture related to Art movements of the 20 -21st centuries ending with the contemporary movements like Deconstruction and Folding Architecture.							

Subject	Local Architecture	No. of Hours	2	No. of Units	4		
Course Ob	jectives:						
Heritag	ge It is a product of human e	experience, desi	ires and r	needs from ear	lier		
	civilizations which are inherited from the local ancestor.						
Gaining the	e local knowledge about our	own architectu	re heritag	ges, that repres	sents the		
social	social and cultural identity, the story of formulation our cities and societies.						
The transferred knowledge throughout those product (best practice through best							
product), Economic factors (key attraction).							
References	:						